Age-Related Changes in Objectively Measured Sleep-Wake Are Not Associated With Diurnal Preference: A Big Data Analysis of 18,100 Users

Introduction

- The circadian system and sleep homeostasis are altered in aging populations¹, yet it remains unclear whether changes in sleep-wake functioning across the lifespan are associated with diurnal preference (i.e., morningness-eveningness).
- Here, we examined whether the slopes of objectively measured sleep changes across the lifespan differed between diurnal preferences.

Materials \& Methods

Data

- Data from 18,100 users (mean age: 51.4 + 16.6, 58\% female) across 741,738 nights (mean nights recorded: 45) were included in the analysis from the PSGvalidated SleepScore Mobile Application.
- Diurnal preference was subjectively assessed with a 5item questionnaire ranging from definitely morningtype to definitely evening-type.

Analysis

- Linear mixed effect models were employed to test whether, across age, morningness-eveningness was associated with total sleep time, wake after sleep onset, sleep onset latency, and sleep efficiency.

Conclusion

- While sleep-wake variables declined linearly with age, the slope of this decline did not differ between strong morning versus strong evening types.
- Age-related sleep impairments are unlikely to be driven by inter-individual differences in morningnesseveningness, despite previous work indicating that diurnal preference reflects dimensions related to circadian periods, sleep homeostasis, and ontogeny.

Results

	Strong Morning	Slight Morning	Neither	Slight Evening	Strong Evening
Users	$2811(17 \%)$	$3504(21 \%)$	$3300(19 \%)$	$3609(21 \%)$	$3757(22 \%)$
Age	51 ± 16	46 ± 16	43 ± 17	41 ± 16	37 ± 17
Female $\%$	53	60	59	59	60
Nights recorded	149,965	167,038	159,301	153,487	135,342
Bed Time	$22: 37 \pm 1: 14$	$22: 55 \pm 1: 09$	$23: 19 \pm 1: 13$	$23: 43 \pm 1: 13$	$00: 29 \pm 1: 33$
Wake Up Time	$06: 09 \pm 1: 13$	$06: 35 \pm 1: 09$	$06: 59 \pm 1: 15$	$07: 18 \pm 1: 18$	$07: 49 \pm 1: 32$
Total Sleep Time (min)	348 ± 56	362 ± 54	363 ± 58	362 ± 56	350 ± 60
Sleep Efficiency $(\%)$	78 ± 8	80 ± 8	80 ± 8	81 ± 8	81 ± 8
Sleep Onset Latency $(\mathbf{m i n})$	19.8 ± 9.5	20.1 ± 9.7	20.5 ± 10.0	20.6 ± 10.3	20.2 ± 10.3
Wake After Sleep Onset ($\mathbf{(m i n})$	69.4 ± 32.9	64.4 ± 31.6	61.7 ± 32.0	58.6 ± 31.3	53.5 ± 30.0

Table 1. Demographic and average sleep-wake characteristics for all diurnal preferences.

Figures 3 A- 3 D. Although total sleep time (TST, Figure 2A) and sleep efficiency (SEF, Figure 2B) declined linearly with age (TST: $\beta=-1.03, \mathrm{SE}=0.062, \mathrm{p}<0.0001 ;$ SEF: $\beta=-0.27, \mathrm{SE}=0.008, \mathrm{p}=<0.0001$), the slopes of this decline were no significantly different between strong-morning and strong-evening types (TST: $\beta=-0.078, S E=0.079, p=0.32$; $\mathrm{SEF}: \beta=-$ $0.001, \mathrm{SE}=0.010, \mathrm{p}=0.91$). Similar null findings between strong-morning versus strong-evening types were observed fo sleep onset latency (SOL, Figure 2C) and wake after sleep onset (WASO, Figure 2D), with both increasing linearly with age across all diurnal preferences (WASO: $B=0.40, S E=0.012, \mathrm{p}=<0.0001$; $S O L: B=0.026$, $S E=0.011, \mathrm{p}=0.013$), but no significant differences in the slopes over age between strong-morning versus strong-evening types could be observed (WASO: $\beta=-0.005, \mathrm{SE}=0.015, \mathrm{p}=0.74 ; \mathrm{SOL}: ~ \beta=-0.014, \mathrm{SE}=0.014, \mathrm{p}=0.28$).

Assessing the Impact of Race and Income on Changes in Self-Reported Sleep Quality During the COVID-19 Pandemic

Colin Burke ${ }^{1}$, Luke Gahan¹, Holly M. Rus ${ }^{1}$, Sharon Danoff-Burg ${ }^{1}$, Nathaniel F. Watson², Roy J. Raymann ${ }^{1}$, Elie Gottlieb ${ }^{1}$

 ${ }^{1}$ SleepScore Labs, Carlsbad, CA ${ }^{2}$ Department of Neurology, University of Washington School of Medicine, Seattle, WA
Introduction

- Early evidence suggests that the COVID-19 pandemic has differentially impacted sleep-wake functioning¹.
- Here, we examined the association between socioeconomic factors and changes in self-reported sleep quality from before to during the COVID-19 pandemic.

Materials \& Methods

Data

- A cross-sectional survey of 2,154 users from the SleepScore database (mean age: 46.8 +- 16.1, 56\% female; 28\% minority race/ethnicity) was conducted in January 2022.

Analysis

- Proportional odds (ordinal) logistic regression was employed to test the significance of race/ethnicity and annual household income for the likelihood of changes to pre-pandemic self-reported measures of sleep quality, wake after sleep onset (WASO), and sleep onset latency (SOL).

Conclusion

- Significant changes in self-reported sleep quality during the COVID-19 pandemic were seen across social and economic groups.
- Results suggest that the COVID-19 pandemic may exacerbate pre-pandemic sleep inequalities among individuals with low household incomes.
- A differential impact of the COVID-19 pandemic on selfreported SOL among Hispanic/Latino individuals was observed, though no significant changes to selfreported measures of sleep quality were observed for other racial/ethnic groups.

Results

Figure 1. Hispanic or Latino participants were 1.54 times (95% CI $1.11-2.14, \mathrm{p}=.007$) more likely than White participants to report
increased sleep onset latency. No significant changes in self-reported overall sleep quality, soL, or WASO were observed for other increased sleep onset latency. No significant changes in self-reported overall sleep quality, SOL, or WASO were observed for othe racial/ethnic groups.

[^0] $\$ 34,999$ USD were also 1.75 times (95% Cl $1.21-2.53, p=.002$) more likely than high-income participants to report decreased \$34,999 USD were

The Association Between Self-Reported Electronic Device Usage and Objectively Measured Sleep in Adults

Aman Aman ${ }^{1}$, Luke Gahann ${ }^{1}$, Colin Burke ${ }^{1}$, Samantha Wilson ${ }^{1}$, Nathaniel F. Watson ${ }^{2,3}$, Roy J. Raymann ${ }^{1}$, Elie Gottlieb ${ }^{1}$
${ }^{1}$ Sleepscore Labs, Carlsbad, CA ${ }^{2}$ Department of Neurology, ${ }^{3}$ University of Washington School of Medicine, Seattle, WA

Introduction

- Use of light emitting electronic devices in bed before sleep has been associated with sleep disruption in children and adolescents ${ }^{1}$.
- Wavelength and intensity of emitted light, and cognitive and emotional engagement with device, have been proposed as explanations for sleep disruption.
- Here, we examined association between self reported electronic device usage and objective sleep parameters in an adult population of consumer sleep technology users.

Materials \& Methods

Data

- Data from 231 users across 25,315 nights from the PSG-validated SleepScore mobile app.
- Device usage was subjectively assessed with a 4item questionnaire ranging from 0 days to 7 days in a week.

Analysis

- A mixed effect model was used for this analysis.

Conclusion

- Self-reported use of electronic devices in bed before sleep was associated with shorter time in bed, later bed time and shorter total sleep time.
- These results suggest that electronic device usage before bed reduces the sleep opportunity window and shortens time in bed and total sleep time.

Results

	Full Sample	O Days	$\mathbf{1 - 3 ~ D a y s ~}$	4-6 Days	7 Days
Number of Users	231	34	29	70	98
Nights Recorded	25,315	$3,868(15.2 \%)$	$5,601(22.1 \%)$	$5,828(23 \%)$	$100018(39.6 \%)$
Age (years)	48.8 ± 16.6	60.2 ± 11.1	57.1 ± 13.9	55.5 ± 13.7	56 ± 15.2
Nights Recorded	-	15.2%	22.1%	23%	39.5%
Bedtime	$23: 25 \mathrm{hr} \pm 96$ mins	$23: 10 \mathrm{hr} \pm 63$ mins	$23: 45 \mathrm{hr} \pm 96$ mins	$23: 46 \mathrm{hr} \pm 132$ mins	$23: 18 \mathrm{hr} \pm 89 \mathrm{mins}$
Wake Up Time	$7: 25 \mathrm{hr} \pm 120$ mins	$7: 10 \mathrm{hr} \pm 64$ mins	$7: 10 \mathrm{hr} \pm 100 \mathrm{mins}$	$8: 04 \mathrm{hr} \pm 186$ mins	$7: 17 \mathrm{hr} \pm 88$ mins
Total Sleep Time	352 mins ± 75 mins	364 mins ± 62 mins	356 mins ± 71 mins	341 mins ± 80 mins	352 mins ± 78 mins
Sleep Efficiency (\%)	76 ± 12	76 ± 9	77 ± 11	76 ± 11	74 ± 13

Figure 1. Regression plot of total sleep time for frequency of device use before sleeping (days per week). Higher electronic device
usage was associated with a reduction in total sleep time ($\beta=-9.2,95 \% C \mid[-15.9-2.5] \mathrm{p}=0.007$.

Figure 2. Regression plots of bed time for frequency of device use before sleeping (days per week). Higher electronic device usage was associated with later bedtimes ($\beta=0.17,95 \% \mathrm{Cl}[0.029,0.324], p=0.019$).

Alcohol And Caffeine Associated With Poorer Sleep: A Big Data Analysis Of Self-reported Consumption And Objectively Measured Sleep

Introduction

- The direct effects of caffeine and alcohol consumption on subsequent sleep have largely been confined to in-lab protocols with cross-sectional measurements and relatively small samples, thus limiting the ecological validity and generalisability of findings.
- This present analysis leveraged longitudinal and naturalistic data from active consumer sleep technology users to examine whether daily self-reported alcohol and caffeine consumption was associated with objectively measured sleep.

Materials \& Methods

Data

- Data from 26,2448 users across 316,555 nights (mean nights per user: 12.0 +/- 38.8)
- Users aged 16-90 (mean: $38.6+/-15.4$) were included in the study. 51.0% of users were female
- Self-reported questionnaires were used to capture
- Alcoholic beverages consumed
- Caffeine drinks consumed

Analysis

- Mixed effect modelling was used for the analysis
- Models were adjusted for age and gender

Conclusion

- Alcohol and caffeine consumption is associated with shorter sleep durations and impaired sleep efficiency, suggesting an overall reduction in sleep quality.
- Alcohol consumption is also associated with a reduction in sleep onset latency
- Our findings suggest that a reduction in alcohol and caffeine consumption by the general public may positively impact sleep health and subsequent general health.

Results

Parameter	TST			SOL			WASO			Sleep Efficiency		
	Coef	SE	\boldsymbol{p}									
Intercept	419.45	1.45	<0.001	19.30	0.29	<0.001	12.52	0.64	<0.001	91.87	0.17	<0.001
Gender[M]	-17.24	2.06	<0.001	1.49	0.41	<0.001	3.75	0.91	<0.001	-1.17	0.25	<0.001
Age	-0.95	0.04	0.007	0.04	0.01	<0.001	1.02	0.02	<0.001	-0.24	0.00	<0.001
Age:Gender	-0.01	0.05	<0.001	-0.04	0.01	<0.001	0.07	0.02	0.001	-0.02	0.01	0.002
Drinks	-5.94	0.47	<0.001	-1.02	0.12	<0.001	-0.55	0.22	0.012	-0.03	0.06	0.649
Gender[M]:Drinks	2.61	0.58	<0.001	0.02	0.15	0.905	0.75	0.27	0.006	-0.08	0.07	0.254
Age:Drinks	0.13	0.01	<0.001	0.01	0.00	0.021	0.03	0.01	<0.001	0.00	0.00	0.619
Age:Drinks:Gender[M]]	-0.06	0.01	<0.001	0.00	0.00	0.697	-0.02	0.01	0.001	0.00	0.00	0.343

Parameter	TST			SOL			WASO			Sleep Efficiency		
	Coef	SE	\boldsymbol{p}	Coef	SE	\boldsymbol{p}	Coef	SE	\boldsymbol{p}	Coeef	SE	\boldsymbol{p}
Intercept	422.29	1.60	<0.001	18.68	0.33	<0.001	12.50	0.71	<0.001	92.03	0.19	<0.001
Gender[M]	-16.94	2.27	<0.001	1.44	0.47	0.002	3.73	1.01	<0.001	-1.10	0.27	<0.001
Age	-0.92	0.04	00.001	0.03	0.01	<0.001	1.04	0.02	<0.001	-0.24	0.01	<0.001
Age:Gender	-0.03	0.05	0.553	-0.04	0.01	0.001	0.08	0.02	0.001	-0.02	0.01	<0.001
Cups	-5.82	0.59	<0.001	0.19	0.14	0.193	-0.47	0.27	0.084	-0.15	0.07	0.03
Gender[M]:Cups	1.28	0.76	0.093	-0.11	0.19	0.57	0.31	0.35	0.386	-0.05	0.09	0.576
Age:Cups	0.06	0.01	<0.001	0.00	0.00	0.953	0.00	0.01	0.622	0.00	0.00	0.35
Age:Cups:Gender[M]	-0.01	0.02	0.407	0.00	0.00	0.844	-0.01	0.01	0.171	0.00	0.00	0.178

[^1]
[^0]: Figure 2. Compared to high-income ($\$ 150,000+$ USD) participants, low-income ($\$ 0$ - $\$ 25,000$ USD) participants were 2.15 times
 $(95 \% C$ I $1.58-2.92, \mathrm{p}<.001)$ more likely to report decreased

[^1]:

